Inactivation of delayed outward current in molluscan neurone somata.
نویسندگان
چکیده
1. Inactivation of delayed outward current was studied by voltage clamp of isolated neurone somata of the molluscs Archidoris and Anisodoris. During prolonged voltage clamp steps in normal artificial sea water delayed outward current rises to a peak and then declines to a non-zero steady-state. During repetitive clamp pulses at repetition rates slower than 2/sec, the amplitude of peak outward current in the second pulse is commonly less than the amplitude at the end of the preceding pulse, giving the impression of continued inactivation during the repolarized interval. We have termed this property cumulative inactivation. 2. Two components of delayed outward current were separated using tetraethyl ammonium ions (TEA) and cobalt ions (Co). External TEA blocks 90% of a voltage and time dependent outward current termed K current (IK). External Co blocks 85% of a Ca activated delayed outward current termed Ca current (ICa does not inactivate during prolonged or repetitive voltage clamp pulses. IK, however, inactivates during prolonged voltage clamp steps and shows cumulative inactivation during repetitive voltage clamp pulses. 3. Inactivation of IK is voltage and time dependent and does not require influx of Ca ions. 4. As measured by a prepulse method, the onset of inactivation is characterized by a two time constant process. Fast inactivation occurs with a time course comparable to the rate of rise of outward current and can account for 90% of total inactivation. 5. Recovery from inactivation is slow with a time constant approximately an order of magnitude slower than the onset of inactivation. 6. The current-voltage (I-V) curve for peak IK can be N-shaped, with a region of negative slope resistance in the range of +30 to +80 mV. The I-V curve for steady-state IK, however, shows little or no tendency to form a local maximum. 7. The pattern of delayed outward current varies considerably between cells. A major contributing factor to this variability appears to be the relative contributions of ICa and IK to delayed outward current.
منابع مشابه
Repetitive Firing in Molluscan Giant Neurones
The somata of molluscan neurones respond with long trains of spikes to steady injected outward current. During such repetitive firing the maximum rate of rise of action potentials usually decreases as a result of inactivation of the transport mechanism for inward current. Significant inactivation of this transport system does not often change the peak level of the action potential (Magura, 1967...
متن کاملDiversity of the transient outward potassium current in somata of identified molluscan neurons.
We have undertaken a quantitative study of the differences in the properties of the fast transient outward current (A-current) between identified neurons of 2 species of nudibranch mollusc. Somata from identifiable neurons of Archidoris montereyensis and Anisodoris nobilis were isolated and voltage-clamped with a 2-microelectrode voltage clamp at 11 degrees C. We examined diversity in the expre...
متن کاملThe effect of temperature on the outward currents in the soma of molluscan neurones in voltage-clamp conditions.
The delayed outward current in snail neurones was separated into two components with different temperature sensitivity: (i) a persistent component and (ii) a transient (inactivating) component. The effect of cooling on the value of the transient current is strongly dependent upon the value of the conditioning potential. It was supposed that cooling causes a decrease in the negative surface pote...
متن کاملRapid recovery from K current inactivation on membrane hyperpolarization in molluscan neurons
Recovery from K current inactivation was studied in molluscan neurons using two-microelectrode and internal perfusion voltage clamps. Experiments were designed to study the voltage-dependent delayed outward current (IK) without contamination from other K currents. The amount of recovery from inactivation and the rate of recovery increase dramatically when the membrane potential is made more neg...
متن کاملExistence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 291 شماره
صفحات -
تاریخ انتشار 1979